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Results from a direct numerical simulation of a shear-free turbulent mixing layer are 
presented. The mixing mechanisms associated with the turbulence are isolated. In 
the first set of simulations, the turbulent mixing layer decays as energy is exchanged 
between the layers. Energy spectra with E ( K )  - rc2 and E ( K )  - dependence at low 
wavenumber are used to initialize the flow to investigate the effect of initial conditions. 
The intermittency of the mixing layer is quantified by the skewness and kurtosis of 
the velocity fields: results compare well with the shearless mixing layer experiments 
of Veeravalli & Warhaft (1989). Eddies of size of the integral scale (k3I2/c) penetrate 
the mixing layer intermittently, transporting energy and causing the layer to grow. 
The turbulence in the mixing layer can be characterized by eddies with relatively 
large vertical kinetic energy and vertical length scale. In the second set of simulations, 
a forced mixing layer is created by continuously supplying energy in a local region 
to maintain a stationary kinetic energy profile. Assuming the spatial decay of r.m.s. 
velocity is of the form u K y", predictions of common two-equation turbulence models 
yield values of n ranging from -1.25 to -2.5. An exponent of -1.35 is calculated 
from the forced mixing layer simulation. In comparison, oscillating grid experiments 
yield decay exponents between n = -1 (Hannoun et al. 1989) and n = -1.5 (Nokes 
1988). Reynolds numbers of 40 and 58, based on Taylor microscale, are obtained 
in the decaying and forced simulations, respectively. Components of the turbulence 
models proposed by Mellor & Yamada (1986) and Hanjalii & Launder (1972) are 
analysed. A1 though the isotropic models underpredict the turbulence transport, more 
complicated anisotropic models do not represent a significant improvement. Models 
for the pressure-strain tensor, based on the anisotropy tensor, performed adequately. 

1. Introduction 
Turbulent mixing occurs in a wide variety of geophysical flows. For example, wind 

blowing over a lake or ocean generates a turbulent layer near the water surface which 
diffuses downward (Imberger & Patterson 1990). As a result, fluid from below is 
entrained by mechanisms such as engulfment and large-scale stirring produced by 
turbulence or instabilities. The effects of shear on the entrainment rate are important 
and have been studied widely for unstratified and stratified flows but will not be 
considered in this paper. The entrainment process is further complicated when a 
stable density gradient and rotation are included. Parameterization of the mixing 
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rate is necessary for the development of turbulence models which can be used in 
geophysical flow applications. However, as described in Fernando (1991), there is 
little consensus on the entrainment rate correlation and a more thorough study of 
the entrainment process is needed. 

This paper describes the results of a set of turbulent mixing layer simulations that 
evolve without mean shear. In this flow the entrainment mechanisms associated with 
the turbulence may be isolated and the complications introduced by shear avoided. 
The mixing layer is the region between two homogeneous layers of differing kinetic 
energy. Two types of simulations are performed; in the first, the turbulence decays, 
while in the second, the region with higher kinetic energy is continuously forced 
to maintain a steady state. The simulation results are compared to experiments 
for validation and the turbulence structure is further investigated. The last two 
sections of the paper evaluate the accuracy of commonly used turbulence models. 
The effectiveness of individual model components as well as predictions of the spatial 
decay of kinetic energy are calculated. Correct prediction of the spatial decay is 
critical for an accurate formulation of the entrainment rate (Nokes 1988). The effects 
of stable stratification are currently being studied but will presented separately. 

2. Mathematical details of the simulation 
The three-dimensional pseudo-spectral code originally developed by Rogallo (198 1) 

was used. The governing equations are transformed into Fourier space ( ~ 1 ,  ~ 2 ,  ~ 3 )  and 
advanced using a second-order Runge-Kutta method. Nonlinear terms are evaluated 
in physical space to save computation time. The solution consists of the Fourier 
coefficients representing the fluctuating velocity, fii, and fluctuating scalar, 8. The 
simulation is computed on an isotropic 1283 grid (see Rogallo 1981 and Holt, Koseff 
& Ferziger 1992 for details). 

2.1. Initial conditions and forcing 
The initial flow field ii, is created from a homogeneous, isotropic turbulent velocity 
field with a model energy spectrum (Lee & Reynolds 1985) 

K < up 

K p  d K d K c ,  
E(u) - { K2' 

K d 3 ,  

where up is the peak wavenumber, equal to 8, and u,. is the cut-off wavenumber, 
equal to 61. Chasnov (1994) showed that the model spectrum for low wavenumbers 
affects the decay rate of kinetic energy (and length-scale evolution). Therefore both 
E ( K )  - rc2 and ,?(ti) - ti4 dependence for K < xP were studied. Multiplying ii, by the 
desired spatial distribution f(y)  produces the inhomogeneous field ii : 

;(K-x,Ylh"z) = f ( Y )  f iO(KX,Y>KZ). (2.2) 

The result must then be projected onto a divergence-free field to enforce continuity. 
This operation does not affect the velocity by more than 3%. Periodic boundary 
conditions are imposed in all directions requiring that two mixing layers be included 
in the domain. For f(y), a periodic array of Gaussians is used. For clarity, in the 
remainder of the paper the two mixing layers will be averaged and we shall discuss 
the result as if there were only a single mixing layer. 

The decaying mixing layer evolves in the absence of turbulent production. In 
contrast, the forced mixing layer is sustained by continuously adding energy on the 
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high-energy side. This produces a flow analogous to an oscillating grid experiment. 
The energy is added locally by multiplying each component in the velocity field by a 
factor 

where g ( y )  and j( lc) are functions used to localize the energy boosting in physical 
and wave space respectively, and IC = ( K :  + ~ i ) ~ / ~  is the radial wavenumber. The 
function g ( y )  = C exp{-(y - yS)’} restricts the energy addition to the centre of 
the computational domain, ys, while j ( ~ )  is used to prevent energy addition at all 
wavenumbers. 

The use of j ( ~ )  is essential for maintaining a stationary and well-resolved energy 
spectrum. Any energy added at the low wavenumbers will accumulate since little 
dissipation is occurring at these scales. At the highest wavenumbers, any energy 
addition goes directly into dissipation and tends to degrade the resolution of the 
calculation by increasing the kinetic energy in this part of the spectrum. Additionally, 
to emulate the effects of turbulence generated by an oscillating grid, the forcing 
should be restricted to a finite range of scales. For these reasons energy is not added 
to the extreme wavenumbers and j ( ~ )  is chosen as 

Q ~ I c ~ ,  Y ,  = Q,(K-,, Y ,  K, )  (1 + g ( y )  A,)), (2.3) 

where K I  = 3 and K h  = 42 are the lower and upper wavenumbers that are forced, 
respectively. 

After 5 time steps the energy decays to about 95% of the original level and the 
amplitudes of the velocity coefficients are increased according to (2.3). The amplitude 
of C required to return the energy to the prescribed level is determined from the 
current energy in the flow. Approximately 1/3 of the required energy is added into 
each component (u2, uZ7 and 3). Among the components the amplitude of C is slightly 
and randomly re-scaled to ensure isotropic forcing. With the degree of randomness 
chosen the energy added to the components does not vary by more than 5% and on 
average, an equal amount of energy is added to u2, 02, and 3. After the velocity 
amplitudes are boosted according to (2.3 j, continuity is enforced by subtracting the 
divergent portion of the velocity field. This operation does not change the velocity 
field by more than 3%. 

2.2. Statistical methods 
Given that the turbulence is statistically homogeneous in the horizontal (x, 2)-plane, 
the two-point velocity correlation tensor is 

-- 

_ _  

where x and r are the position and separation distance in the horizontal plane, 
respectively. The overbar denotes an ensemble average over the horizontal plane. The 
two-dimensional energy spectrum tensor, Eij(k) ,  is related to Qij(r) through an inverse 
Fourier transform 

where k is the two-dimensional wavenumber vector. The radial energy spectrum is 
formed by integrating Eij(k) over annuli in the ( I C , , K ~ )  plane 

E ~ ~ ( I c )  = Eij(k)dA(k) (2-7) J 
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with ti = Ikl defined as the magnitude of the wavenumber vector k .  This spectrum is 
used to study the dynamics of the mixing layer and to monitor the resolution of the 
calculation. Taking the one-dimensional transform of Qij(v) when Y is aligned with 
one of the horizontal directions (Y = re,, for example) yields 

where Eij(rc,) is the one-dimensional energy spectrum and em is the unit vector in the 
m direction (Lee & Reynolds 1985). 

We define the integral scale in the x-direction as 

where Ri, = ui(x)uj(x)  = Qij(0) is the Reynolds stress tensor. Using the Fourier 
transform relation (2.8), an alternative form of the above integral scale can be 
obtained 

71 
A..  =--E..(ti LJ 1 - - O). (2.10) 

Rij 
[J,1 

In general, the longitudinal integral scale is defined as 

and transverse integral length scales are defined as 
n: 

&,l = -E22(K1 = 0) 
R22 

and 
71 

A33.1 = --33(K1 = 0). 
R33 

(2.11) 

(2.12) 

(2.13) 

Since the turbulence is axisymetric, the length scales for the z-direction, A33,3, A22,3, 

and A11,3 are statistically identical to (2.11), (2.12), and (2.13) respectively, and are 
used for averaging purposes. 

The Taylor microscales are defined as 

(2.14) 

and are used to form a Reynolds number, ReA = qA11,1/v, where q2 = m. 
2.3. Transport equations 

The transport equations for the Reynolds stresses are obtained by time averaging the 
fluctuating momentum equations and are written here for reference : 
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High-energy homogeneous region 
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Y i  Mixinglayer 

Low-energy homogeneous region 

FIGURE 1. Initial kinetic energy profile for the decaying mixing layer. 

d i a  i a  aui aui 
- ( 4 2 / 2 )  = - - -(u2 + u2 + w2)u - - -p - v - - 
at  2 aY Po  dY axk axk 

where Gh(y),  G,(y), and G,(y) denote the contributions to the budgets from the 
source (these terms are zero for the decaying mixing layer). The scalar concentration 
is represented by 0 and p u  is a reference density. The equations for the scalar variance 

(2.18) 

and turbulent scalar flux 

” ” } (2.19) 
axj axj 

are derived from the fluctuating u momentum and scalar concentration equations. 0 
represents the mean scalar concentration at a given height. 

3. Results 
3.1. Unforced mixing layer 

The decaying or unforced mixing layer consists of two regions of approximately 
homogeneous turbulence, with a kinetic energy ratio of about seven, separated by 
a smooth transition region (shown schematically in figure 1). As the kinetic energy 
decays the two regions also exchange energy. The mechanisms associated with 
entrainment, such as engulfment and turbulent diffusion, are isolated from the effects 
of mean shear and instabilities. This flow provides a basis for understanding the 
growth of a mixing layer due to the turbulent mechanisms alone. 

The shearless mixing layer experiments of Veeravalli & Warhaft (1989) provide 
thorough documentation of the statistical quantities and serve as a standard of 
comparison. These experiments were performed in a wind tunnel with composite 
grids (or perforated plates) that generated two regions of turbulence, each with a 
different length scale. A short distance downstream of the grid each region developed 
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FIGURE 2. Evolution of radial energy spectra for the decaying mixing layer ( E ( K )  - ~2) in the high 
(H) and low (L) energy homogeneous regions and mixing layer (M). The spectra for the mixing 
layer and low-energy region are offset by and respectively. 

a distinct kinetic energy. The two sides of the grid had equal solidity which allowed the 
flow to advect downstream with a uniform mean velocity (see Veeravalli & Warhaft 
(1989) for further details). The interaction between the two turbulent regions caused 
the mixing layer to grow with downstream distance. By contrast, in the simulation 
the kinetic energy decays and the mixing layer grows with time instead of distance 
downstream. 

The initial parameters of the simulation were chosen to match the 3:l perforated 
plate experiment of Veeravalli & Warhaft (1989) as closely as possible (3:l denotes 
the ratio of the radii of the two sizes of holes in the plate). This particular experiment 
was chosen for its low microscale Reynolds number, although the Reynolds number 
in the simulation was still only about half as large. Unless specified otherwise, the 
results presented hereafter refer to the simulation with the E ( K )  - K~ initial spectrum 
(this flow was chosen since the Reynolds number was slightly higher than for the 
E ( K )  N K~ simulation). The relevant parameters of the initial flow fields are shown 
in table 1. As in the experiment, the simulated turbulent mixing layer is allowed to 
evolve for about 1 or 2 eddy turnover time scales, T = k /c ,  before it is considered 
truly turbulent. In figure 2 a time series of the radial energy spectrum E ( K )  for the 
decaying mixing layer simulation is shown for each of the homogeneous regions and 
the mixing layer. As the flow decays the small scales lose energy at a much faster rate 
than the large scales in all regions of the flow. This implies that the turbulence in the 
mixing layer becomes increasingly dominated by large scales as the flow evolves. The 
slope of the spectrum at low wavenumbers appears to be constant and is determined 
by the initial condition of E ( K ) .  These energy spectra also show that the flow is 
adequately resolved. 

3.1.1. Decay rates 

Data from early experiments were well described by a power law (Batchelor 1953) 
The decay rate of homogeneous grid turbulence has been thoroughly documented. 

k / k o  = A(t/z)" (3.1) 
where k, is the initial kinetic energy, A is a constant, and time is made dimensionless by 
the initial eddy turnover time z. Experiments (Gad-el-Hak & Corrsin 1974; Bradshaw 
1975) suggest that n is in the range -1.1 to -1.7 with a consensus for a value near 
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Decaying mixing lager 

0.55 
4.14 
0.0001 7 
0.00225 
0.17 
0.14 

17.8 
40.3 
0.32 
0.18 

Veeravalli & Warhaft (1989) 

81.5 
510 

0.090 
0.655 
0.42 
0.37 

33.5 
73.9 
0.091 
0.078 

Power law decay of kinetic energy 
k / k o  K (tit)" 

nl> n2 -1.35,-1.55 -1.25, -1.43 

TABLE 1. Initial parameters of the simulation and experiments of Veeravalli & Warhaft (1989); 
the subscripts 1 and 2 refer to the low- and high-energy sides of the mixing lager, respectively. 
The experimental data refer to the 3:1 perforated plate configuration. For comparison purposes 
3, = (?)1/2/(~/15v)1/2 in this table only. 

-1.2. Direct numerical simulation (DNS) of the decay of homogeneous turbulence 
performed by Riley, Metcalfe & Weissman (1981) indicate n = -1.5 for Re;. = 27.2. 
Lee & Reynolds (1985) recorded power-law decay exponents of n = -1.33 to -1.67 
for their DNS of decaying isotropic turbulence for Re1 = 20 - 60 with E ( K )  - x2 
dependence for IC < xP. The large-eddy simulations of Chasnov (1994) exhibit decay 
exponents that approach n = -1.2 and -1.3 after a large number of eddy turnover 
times for E ( K )  - x 2  and x4 initial energy spectra, respectively. Decay rates in the 
current simulations are found to be n = -1.55 for the high-energy side and n = -1.35 
for the low-energy side. The power-law exponents are obtained by fitting a line 
to the normalized kinetic energy (no virtual origin or offset is used) on a log-log 
plot. In general, exponents from direct numerical simulations are slightly higher than 
laboratory values. However, at lower Re the decay exponents are expected to be 
larger (Riley et aE. 1981). 

A simulation initiated with E ( x )  - K~ dependence for K < xp was also completed 
to examine the effect of the initial energy spectra on decay rates and statistics. Both 
the x2 and lc4 simulations were initiated with the same kinetic energy and Re. As 
shown in figure 3, the kinetic energy in the higher-energy region for both simulations 
decays at approximately the same rate but at a given time there is less energy in the 
rc4 simulation. This is because the distribution of kinetic energy in the K~ simulation 
(more energy in the higher wavenumbers and less in the low wavenumbers) results in 
an initially higher dissipation. Subsequently, the energy in the flow became smaller 
than that derived from the x2 simulation. The power-law decay exponent for the I C ~  

spectrum is n = -1.6, a slightly higher value compared to the lc2 simulation. The 
effect of the initial spectrum on the statistics is discussed below. 

3.1.2. Turbulence statistics 
The moments of the turbulence were computed throughout the mixing layer. The 

only relevant time scales in the flow are those associated with the turbulence; therefore 
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FIGURE 3. Temporal decay of kinetic energy for the E ( K )  - k2 (-) and E(K) - k4 (----) 

simulations. The kinetic energy is normalized by the initial value. 

2 

1 

0 

e 2 
f -l 

W 

-2 

-3 

-4 
0 0.2 0.4 0.6 0.8 1.0 - -  - _  0 0.2 0.4 0.6 0.8 1.0 - -  -- 

(1;2-v;in)/(v$, U$J  (u2-u;jnMu2,, .;,> 
FIGURE 4. Variance of the vertical (a) and horizontal ( b )  velocity field for the decaying mixed layer. 
The curves represent the simulation values at t' = 0.875 (-), 1' = 1.16 (----) and t' = 1.72 
( . _ _ . _ _ _  ). T' m e  is normalized by the initial eddy turnover time. 

time was non-dimensionalized with the initial eddy turnover time z. Statistical 
moments for both mixing layers collapse to an asymptotic state (Veeravalli & Warhaft 
1989) after one eddy turnover time. The variance profiles for 2 and 2, normalized to 
lie between 0 and 1, are shown in figure 4 at three different times. The location where 
the mapped variance is 0.5, defined as y,, and the half-thickness, lip, defined as the 
vertical distance between the locations with non-dimensionalized variance values 0.25 
and 0.75. are used to centre and normalize the vertical coordinate. Even though the 
curves for 7 and 3 are similar, the large intermittent scales are slightly anisotropic 
in the mixing layer. This is discussed in more detail in $3.1.4. 
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FIGURE 5. Normalized skewness of the vertical (a) and horizontal (b )  velocity field for the decaying 
mixed layer. The curves represent the simulation values at t* = 0.875 (-), t' = 1.16 (----) and 
t" = 1.72 ( - -  - - - - . . ) .  Data from Veeravalli & Warhaft (1989) (3:l perforated plate) are also shown (0). 

- -312 
The skewness, S = 2k3/(u2) ? of the velocity field is one indicator of intermittency. 

In figure 5(a)  the normalized skewness of the vertical velocity, S,, at three different 
times is shown together with averaged experimental results. The Gaussian value of 
zero is obtained in both homogeneous regions while, in the mixing layer, there is 
a significant negative deviation. This is attributed to large, intermittent structures 
penetrating downward from the high-energy region. Since the turbulence in the upper 
region is more energetic, the skewness is negative. The peak skewness occurs below 
the centre of the variance profile indicating the slronger influence of the high-energy 
region. The peak values of the skewness profile are nearly identical for the simulation 
and the perforated plate experiment and occur at approximately the same vertical 
location. The skewness of the horizontal velocity, S,, should be zero. Figure 5(b)  
shows that although the skewness is non-zero, there is no perceivable trend. Averaging 
over a larger domain (or more realizations) would reduce Sh.  A small but inexplicable 

As a further indication of the intermittency. the kurtosis, K = u4/(u2)', of the 
vertical and horizontal velocity fields, K,, and Kh, is calculated and shown in figure 
6. Large values of the kurtosis are associated with a sample pool containing a small 
number of values far from the mean. Eddies with large vertical kinetic energy will 
appear intermittently in the mixing layer contributing to non-Gaussian values of the 
vertical kurtosis K,. Similar trends in K ,  are observed in both the experiment and 
simulation. Deviations of Kh from the homogeneous value occur because eddies that 
have large vertical kinetic energy will transport horizontal energy as they penetrate 
the mixing layer. Generally, the agreement between the simulations and experiments 
is good but the peak in the horizontal kurtosis KI,  for the simulation is smaller. As 
the eddies penetrate the mixing layer and overturn, vertical energy may be transferred 
into horizontal components. However, less energetic eddies will decay before their 
energy can be transferred. Since the turbulence in the simulations is generally less 

peak is noticed in the experimental Sh. - _ _  
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FIGURE 6. Normalized kurtosis of the vertical ( a )  and horizontal (b)  velocity field for the decaying 
mixed layer. The curves represent the simulation values at t' = 0.875 (-), t" = 1.16 (----) and 
t' = 1.72 (----.---).  Data from Veeravalli & Warhaft (1989) (3:l perforated plate) are also shown (0). 

energetic compared to the experiments one might expect a smaller peak of Kh in the 
simulation. The location of the peaks in the kurtosis profiles, similar to those for the 
skewness, are located on the weaker side of the mixing layer, indicating the stronger 
influence of the higher-energy region. Outside the mixing layer, in the homogeneous 
regions, both K ,  and Kh retain the Gaussian value of 3. Pope & Haworth (1987), 
using a p.d.f. model, also successfully reproduced the skewness and kurtosis observed 
in Veeravalli & Warhaft (1989). 

The structure of the mixing layer is visualized with a planar view of contours of 
equal kinetic energy. In figure 7 a vertical plane at t / z  = t* = 0.875 is shown. The 
size of structures of high kinetic energy (which have closely spaced contour lines) 
is typically the integral scale; they are found throughout the mixing layer but less 
frequently on the weak side. In the low-energy region these structures are separated 
by areas with little or no energy and are responsible for the intermittency found in 
the statistics. The horizontal line in figure 7 marks the location in the mixing layer of 
the peak skewness. A model based on these observations is given in the Appendix. 

3.1.3. Effect of the energy initial spectrum and Reynolds number 
The profiles of the skewness and kurtosis for the E ( K )  - 7c4 simulations are 

qualitatively similar to the E ( K )  - K* statistics discussed above, although the peaks 
are smaller. Since the x4 flow decays faster initially, has a smaller Re?. (after a given 
t * ) ,  and has less energetic large scales; the intermittent vertical scales in the mixing 
layer are less powerful and will produce smaller peaks in S and K .  

The effect of the Reynolds number was evaluated by repeating the E ( K )  - k2 
simulation at lower Red (Ren = 25 as compared to Red = 40.3) with the same initial 
conditions. The statistics of both simulations were compared after an equivalent 
dimensionless time. Generally, the peaks in the statistics for the lower Ren simulation 
were found to be smaller and closer to the high-energy side of the mixing layer. At 



Entrainment in a shear-free turbulent mixing layer 225 

I 1  

7- 1 I 1 I 
0 5 10 15 20 

FIGURE 7. Kinetic energy contours for the decaying mixing layer in a vertical plane at t' = 0.875. 
The horizontal line indicates the height of the peak skewness in the mixing layer. The horizontal 
axis is normalized by All., (evaluated in the high-energy homogeneous region). 
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lower Re, diffusion contributes more to the growth of the mixing layer. Therefore, a 
less intermittent velocity field is expected. 

3.1.4. Length-scale distribution across the mixing layer 
The horizontal and vertical length scales associated with the largest eddies are 

defined as 1, = (? )3 /2 /~  and 1, = (v2)3/2/c, respectively. These approximations to the 
integral length scales defined by (2.10) are used because the one-dimensional energy 
spectra are not smooth enough to discern the small changes in the integral length scale 
across the mixing layer, even after ensemble averaging over several flows. Profiles of 
1, and 1, at t" = 0.875 are shown in figure 8. In the homogeneous regions these scales 
are nearly equal, while in the mixing layer, 1, is larger than 1,. Eddies that penetrate 
the mixing layer from the high-energy region have most of their energy in the vertical 
component. Of these eddies, the ones that have the largest vertical scale (1,) penetrate 
furthest into the mixing layer. As shown in figure 7, some of the largest turbulence 
eddies exist in the mixing layer, far from the high-energy region. Generally, turbulent 
eddies with 1, > 1, have most of their energy in the horizontal components and do 
not travel far into the mixing layer. In the low-energy homogeneous region, beyond 
the reach of the largest intermittent scales, 1, and 1, become nearly equal again. 

This length scale behaviour is similar to the results from VW. However, in the 
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FIGURE 9. Terms in the decaying mixing layer budget equation for 2 (equation (2.16) with Gp = 0) 
at t' = 0.875: aT/dt (-), dissipation (-), turbulcnt transport (----), pressure transport 
(. .----.) ,  pressure-strain (---). All terms are normalized by E in the high-energy region. Diffusion 
is negligible and is not shown for clarity. 

experiments, 1 ,  exhibits a maximum in the mixing layer. As distance from the high- 
energy region increases, the large penetrating structures become more dominant as 
the local turbulence intensity decreases. This causes the vertical turbulent length scale 
to peak in the mixing layer. In comparison, the penetrating eddies in the simulation 
are less energetic and may not transport themselves as deeply into the mixing layer 
as the scales in the experiments. Consequently, the large intermittent scales in the 
mixing layer are not dominant enough to produce a peak in 1,. 

The budget for the vertical component of the kinetic energy (equation (2.16) with 
Gy = 0) is shown in figure 9 at t" = 0.875. This component is analysed because 
its transport is the largest, relative to 2 and 3, and the contributions from the 
pressure transport and pressure-strain terms are important. In the homogeneous 
regions - the balance is primarily between dissipation and the time rate of change 
of u2.  In the mixing layer, however, the transport contributes significantly to the 
budget. Transport of 3 by the turbulence, -dv3/dy, is large, due to the presence of 
the intermittent penetrating eddies emanating from the high-energy region, where the 
turbulence transport is negative. Since the mixing layer is only weakly anisotropic, 
redistribution of the velocity components by the pressure-strain term (2p/p,)dv/dy 
is small and its contribution to the budget in the mixing layer is negligible. 

The transport by the fluctuating pressure field, -dpv /dy ,  acts in opposition to 
@/dy in the mixing layer. The pressure transport is negative since pv becomes 
smaller in the mixing layer as y decreases (moving from the high- to low-energy 
regions). This correlation is strongly positive near the high-energy region due to the 
low-pressure wakes ( p  < 0) behind the eddies that penetrate from the high-energy 
region. As these eddies move downward the fluid in front of them is pushed ( p  > 0) 
horizontally as well as vertically. Therefore, the correlation between positive pressure 
fluctuations and u is weaker. Far from the high-energy region the correlation begins to 
decrease as the vertical bursts from the high-energy turbulence become less frequent. 
Figure 10 shows contours in a vertical plane of downward velocity -0 (a) and negative 
pressure fluctuations - p  (b)  at t' = 0.875. Large eddies penetrating into the mixing 
layer from the high-energy region are coincident with low-pressure regions. The 
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FIGURE 10. Contours in a vertical plane of fluctuating (a) -u, (b)  -p ,  and (c) pv for the decaying 
mixing layer at t’ = 0.875. The arrow in (a) indicates a large downward-moving structure. A low 
pressure wake (fluctuating p < 0 )  follows the eddy, identified by the arrow in (b). The arrow in ( c )  
indicates the resulting positive correlation between p and l i .  Several other examples can be found in 
the three planes. is evaluated in the high-energy homogeneous region.) 

contours in figure lO(c) show the resulting regions of positive correlation between p 
and v. 

3.1.5. Evolution of mean scalar field 
Initially, the mean scalar concentration, 0 ,  is different in the high- and low-energy 

homogeneous regions. The fluctuations of the scalar concentration, 8, are initially 
zero. The smooth interface that separates the two layers lies in the mixing layer 
between the two homogeneous regions. The evolution of 0 can also be used to 
quantify the intermittency of the mixing layer and transport mechanisms. Figure 11 
shows the mean scalar field normalized between 0 and 1 for t*=O, 0.51, and 1.16. 
The vertical coordinate is offset by yo, the height where the normalized scalar value 
is 0.5, and normalized by the initial scalar half-width l T ,  defined as the distance 
between the normalized scalar values of 0.25 and 0.75. In general there is a good 
collapse but the profile becomes asymmetric as time increases. The scalar field spreads 
faster on the high-energy side of the mixing layer compared to the weak side. This 
preferential spreading is caused by the large energetic structures that emanate from 
the high-energy region that transport fluid over a distance proportional to 1,. Since 
1, is smaller than the interface thickness, these eddies do not affect the entire width 
of the scalar profile. On the weak side of the layer, the turbulence scales are smaller 
and weaker so the eddies are less effective at transporting the scalar (see figure 8). 
Figure 12 shows the time evolution of I T ,  a measure of the thickness of the mixing 
layer, along with I+, defined as the distance between the normalized scalar values of 
0.25 and 0.5, and 1- defined as the distance between the normalized scalar values of 



FIGURE 11. Evolution of normalized mean scalar profile. The curves represent the scalar at t' = 0 
(-), t" = 0.51 (----), t' = 1.16 (-. . .---).  The vertical axis is normalized by the initial scalar 
half-width lT at t' = 0 and centred around the normalized scalar value of 0.5. 
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FIGURE 12. Evolution of scalar half-widths LT (-), l+ (----), 1- ( - - - - . - -  ). 
All length scales are normalized by the initial value of I T .  

0.5 and 0.75. Although l+ and 1- both contribute to the growth of the mixing layer, 
I+ increases much faster than I -  causing the mean profile to develop asymmetrically. 
These results compare well with those of Jayesh & Warhaft (1994) in regions where 
stratification does not significantly affect the turbulence. 

3.2. Forced mixing layer 
The more geophysically relevant case of a forced mixing layer was also simulated. 
The energy profile is maintained by adding energy locally to the higher-energy side 
of the mixing layer. Turbulent entrainment develops as the turbulence diffuses from 
the source. Laboratory experiments use an oscillating grid to generate turbulence 
which then diffuses into the surrounding region (Hopfinger & Toly 1976; Hannoun, 
Fernando & List 1989). After about 5 eddy turnover times a steady kinetic energy 
profile developed in the simulation. The kinetic energy profiles before and after 
boosting are shown in figure 13. The passive scalar field, also shown in figure 13, was 
constructed with a sharp interface to simulate a thermocline. Relevant parameters 
at steady state for the homogeneous region above the mixing layer are displayed in 
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FIGURE 13. The normalized kinetic energy before (----) and after (-) a boosting event 
displays the local influence of the source. k,  is evaluated at the centre of the source region after 
boosting. The distance from the centre of the source, ( y - y s ) ,  is normalized by the source half-width, 
lsll2. The scalar profile is also sketched for reference ( . - - - - - - - ) .  
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FIGURE 14. Propagation of the scalar interface: t' = 0 (-), t* = 5.3 (----). 

table 2. The horizontal coordinate represents distance from the source and is offset 
by the height of the centre of the source and normalized by the source half-width 
Isll2, defined as the height that contains 50% of the source energy. The interface is 
far enough from the source to ensure that the local turbulent kinetic energy is derived 
almost entirely from transport. 

The scalar distribution at the beginning of the simulation and at t" = 5.3 are shown 
in figure 14. Again, time is normalized by the initial eddy turnover time. The scalar 
profile does not remain symmetric. The large amount of kinetic energy above the 
interface increases the scalar concentration in this region as fluid of relatively high 
concentration below the interface is transported upwards by the turbulence. The 
interface propagates downward as the mixed layer grows. Far below the interface, the 
slow changes to the scalar field are caused mainly by molecular diffusion. 

For numerical reasons the source cannot be restricted to a single horizontal plane. 
As discussed above, the source is represented by a narrow Gaussian function, g(y). 
Continuity is enforced after each boosting event; this causes the source to be slightly 
less localized. Placement of the scalar interface is a compromise between minimizing 
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7.5 

0.15 
0.21 

0.21 

35 

58 

TABLE 2. Time-averaged quantities in the homogeneous region above the mixing layer 

the effect of the source by placing the interface far away, and maintaining reasonably 
energetic turbulence in the mixing layer. At the location chosen, the transport of 
kinetic energy from the turbulence is approximately five times the contribution of the 
source. Below the interface the source is even less significant. This degree of influence 
of the source is deemed acceptable. 

3.2.1. Spatial dependence and isotropy 

When the flow reaches steady state, turbulent transport balances the dissipation 
far from the source and the kinetic energy profile becomes stationary. By contrast, 
the scalar field continues to evolve. The horizontal r.m.s. velocity, u', decays with 
distance from the source as u' cc ( y , / l ~ ~ , ~ ) "  (shown in figure 15) where n = -1.35 
and yo is the distance from the centre of the source offset by the virtual origin. 
Using a method similar to Hannoun et al. (1989), the virtual origin is determined 
by extrapolating a line to the y-axis that is a best fit of l /u '  plotted us. y' (y' an 
arbitrary distance from the grid). Only the mixing layer portion of the u' profile was 
fitted; it cannot be assumed that the power law applies throughout (an observation 
also made by Hopfinger & Toly 1976). The spatial decay rates in experiments range 
from n = -1.0 (Hannoun et a!. 1989) to n = -1.5 (Nokes 1988). Many factors 
lead to the difference in decay exponents. In a thorough study of oscillating grid 
turbulence Nokes (1988) concluded that the exponent is dependent on the stroke and 
distance from the grid. Exponents ranging between -0.86 and -1.5 for the decay 
of r.m.s. horizontal velocities were recorded. De Silva & Fernando (1992) reported 
variations in the decay rate with grids of different solidity. Additionally, the decay 
exponent is sensitive to the choice of virtual origin. The spatial decay of kinetic 
energy was found to be proportional to in the simulation. Laporta, Shao & 
Bertoglio (1995) developed a two-point model for inhomogeneous turbulence that 
yields a decay exponent of -3. 

Further comparisons with laboratory oscillating grid experiments are made. The 
spatial dependence of the longitudinal integral length scale (2.11) and ReA = 
A ~ I , I ~ / Y  are shown in figure 16. As distance from the source increases /111,1 grows 
linearly. The results are consistent with experiments which have shown A N y 
(Hopfinger & Toly 1976 and Hannoun et al. 1988). Long (1978) states that the 
product of the integral length scale and turbulent velocity scale should be independent 
of distance from the turbulence source. Data from the experiments of Hopfinger & 
Toly (1976) show that Au decays with distance from the source or remains constant, 
depending on the grid solidity and stroke. Simulated values of ReA decrease with 
distance because 4 decays faster than A grows. One possible explanation for this 
dependence is the lower Reynolds number in the simulation (Re,, = 58) compared to 
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FIGURE 15. Decay of horizontal r.m.s. velocity with increasing distance from the source. The 
velocity is normalized by the value in the centre of the source region. 
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FIGURE 16. Spatial dependence of the integral length scale (----) and ReA = A q / v  (-). Both 
are normalized by their respective values at the centre of the source region. 

laboratory experiments (Ren = 120 for Hannoun et al. 1988 and ReA = 400 - 800 for 
Hopfinger & Toly 1976, respectively). 

In addition to Reynolds number effects, the spatial dependence of the integral 
scale may depend upon how the turbulence is produced. This can be explored 
using a simple theoretical model for the entrainment process which is outlined in the 
Appendix. It is shown that spatial variation of the length scale is dependent on the 
energy spectrum. 

The method of energy addition renders the turbulence in the centre of the source 
region isotropic. As the kinetic energy front propagates outward the turbulence 
becomes anisotropic. After front propagation has ceased, u’/u’ remains near 1.4 in 
the mixing layer (see figure 17). By contrast, vertically oscillating grid experiments 
produce extremely large u’/u’ values near the source which then decrease with distance 
from the grid. Eddies that penetrate into the mixing layer contain relatively large 



232 D. A. Briggs, J. H.  Ferziger, J.  R. Koseff and S .  G .  Monismith 

0.8 
0 1 2 3 

(Y-YsVS,,2 
FIGURE 17. Anisotropy ratio v'lu'. 

amounts of vertical kinetic energy. Therefore, the anisotropy ratio d / u '  is expected 
to be above unity in the mixing layer. In many experiments the ratio remains larger 
than 1 far from the grid (1.32 and 1.2 were reported by Hannoun et ai. 1988 and 
Hopfinger & Toly 1976, respectively). 

3.2.2. The velocity field, turbulence structure, and kinetic energy budget 

The forced mixing layer is statistically stationary and averaging over time and 
horizontal planes gives smooth results. Compared to the decaying mixing layer, the 
intermittency is higher in the forced case, primarily because the kinetic energy ratio is 
larger and Re, is slightly higher. Near the source and below the mixing layer S, and 
SJ, are both nearly zero. Peak values of S, and K ,  reach -1.5 and 12, respectively, 
and are biased towards the weaker side of the mixing layer as in the decaying 
case. 

The mechanisms of entrainment can be studied by examining planar views of the 
scalar concentration and kinetic energy. Numerous features are observed in the vertical 
plane shown in figure 18 (the vertical axis represents distance below the source). As 
in the decaying case, structures of the size of the integral scale deform the interface. 
These eddies intermittently penetrate deep into the low-turbulence region and mix 
fluids of different concentration (regions denoted by a). Fluid parcels are separated 
from other fluid of similar concentration (b)  as a result of these large structures. 
Mixing occurs at small scales once the large scales have done the stirring (c). The 
interface is highly contorted on the high-energy side and relatively unperturbed on the 
opposite side. The interface thickness also varies with location and can be relatively 
thin (d ) .  The large engulfing structures are apparent and coincide with mechanisms 
operating without the influence of buoyancy (Breidenthal 1992). 

The terms in the kinetic energy balance (2.17) are averaged over time and are shown 
in figure 19. Beyond the region where the source dominates, the kinetic energy budget 
is a balance between transport and dissipation. The total transport of turbulent 
energy, the first two terms on the right-hand side of (2.17), is negative above the 
mixing layer and positive below it, indicating net transport of energy into the mixing 
layer. Diffusion of kinetic energy represents a small part of the budget. 
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FIGURE 18. Scalar concentration in a vertical plane for the forced mixing layer. The following 
regions are marked : regions with large scales (a); regions where engulfment has pinched-off parcels 
of fluid of different concentration (b) ;  rcgions marked by small-scale mixing (c); regions where the 
interface has become thin (d). The location of the mean interface height is denoted by y ~ .  
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RGURE 19. Transport terms in equation (2.17) for the forced mixing layer source (-), a k / d t  
( - - - . - - - ) ,  dissipation (-), turbulent and pressure transport (---- ), diffusion of kinetic energy 
(- - -). All terms are normalized by the source value at ( y  - y,)/ll,2=0. 

4. Turbulence models 
A commonly used turbulence model for geophysical flows was developed by Mellor 

& Yamada (1986, referred to as MY below). Versions of this model include a complex, 
full Reynolds stress form and a simpler two-equation version similar to the model 
proposed by Launder (1990), the major difference being the determination of the 
length scale, 1. A transport equation for 1 is used and the dissipation is parameterized 
in terms of k and 1. The MY model uses assumptions first proposed by Rotta (1951) 
to model the turbulent transport. The constants in this model were evaluated using 
experimental data from homogeneous shear flows and regions of boundary layers 
where production is balanced by dissipation (buoyancy effects were absent). The 
model accurately reproduces flows used to calibrate it. However, in shearless mixing 
layers predictions may be inaccurate. 
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The correlation tensor 

Tij2 = + pUid j2  + pu/d,:! (4.1 ) 

is considered as a diffusive term (Hanjalib & Launder 1972, hereafter HL) and 
typically modelled as 

or in isotropic form 

while the MY model uses 

where S, and Ok are model constants. We restrict our discussion to these components 
of the general tensor Tljk since they correspond to transport in the one inhomogeneous 
direction. The correlations Tl12 + T332,  T222, and T1,2 along with the isotropic HL (4.3) 
and MY (4.4) model predictions are shown in figure 20 using data from the forced 
mixing layer (the horizontal axis represents distance below the source). The length 
scale used in the MY model is the integral scale defined by (2.11). Near the source, at 
( y  - y , )  = 0, the correlations and turbulence transport are approximately zero since 
the turbulence is homogeneous. In the mixing layer the turbulence is dominated by 
downward-moving intermittent structures which produce negative values of T222, due 
primarily to large contributions from YYV. The eddies that transport fluid from the 
source region carry both horizontal and vertical components of kinetic energy. This 
explains the large negative deviation of T,12 + T332 in the mixing layer. The isotropic 
models (4.3) and (4.4) underpredict the correlations, although the trends are correctly 
reproduced. Since the underprediction is not uniform among the components in the 
MY model, altering the model constants in (4.4) may not yield much improvement. 

The predictions from the more complicated anisotropic model (4.2) are also shown 
in figure 20. In the anisotropic formulation more emphasis is placed on the vertical 
component of velocity. Owing to the anisotropy, this component makes the largest 
contribution to the transport in the mixing layer. As a result, the predictions are 
slightly better but are generally too small. 

The MY models for vv8 and 8% were also examined. These models are formulated 
similar to the transport correlations in (4.4) and are written as 

- a 3  vve = -2 i sv0- 
aY 

and 

(4.5) 

where SO, and So0 are model constants. 
In figure 21(a) the profile of a is shown together with the predictions from the 

isotropic MY model (4.5) and an anisotropic model proposed by Craft, Graham & 
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FIGURE 20. Profiles of the transport correlations (-), MY model (- - - - ), HL isotropic model 
(.......) , and HL anisotropic model (---). (a) T112 + T332, (b)  Tzzz, (c )  Tiiz. Quantities are 
normalized by 43 at ( y  - yS) / l s1p=O.  The horizontal axis represents distance below the source. 

Launder (1993), 

The correlation a is negative in the mixing layer because eddies with large vertical 
kinetic energy are correlated with negative &fluctuations. The predictions from the 
scalar flux models are poor because the parameterizations are inappropriate. In both 
formulations vv8 is considered to be proportional to a a / a y .  However, the profile of 
u0 peaks in the mixing layer causing d a / d y  to change sign while a is consistently 
negative. The isotropic model (4.6), shown in figure 21(b), generally tracks 88a but is 
quantitatively incorrect. 

The pressure-strain tensor, njj, can be decomposed into slow and rapid contribu- 
tions, 

- 

n, = n;) + n,:.). (4.8) 

Without mean shear, only the slow pressure-strain requires modeling. Typically, II;) is 
assumed proportional to the anisotropy of the turbulence (Rotta 1951). Most models, 
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FIGURE 21. ( a )  Profile of vv8 [-), MY model (----), and anisotropic model of Craft et 
al., ( - - - - - - - - ) .  The curves are normalized by ?A’, where A’ is an r.m.s. quantity, evaluated at 
( y  - ys)/ls1/2=0. ( b )  Profile of vBH [-) and MY model [----). The curves are normalized by 
u’@, where u’ is an r.m.s. quantity, evaluated at ( y  - ys)/Is1!2=0. (c) Profiles of 1722 (----) and 
predictions with MY model (----). Quantities are normalized by lI22 at ( y  - y,)/Is1/2=0. The 
horizontal axes represent distance below the source. 

including MY, represent the anisotropy to first order and model the pressure-strain as 

(4.9) 

where hij = W/q2 - 6,,/3. In the mixing layer, where v’/u’ > 1, I 7 2 2  is negative 
because the pressure-strain term acts to return the turbulence to an isotropic state. As 
shown in figure 21(c) the MY model for l722 generally yields the correct trend and is 
qualitatively correct in the mixing layer. In the source region, the agreement is poor. 
In the simulated flows described in this paper, the contribution of the pressure-strain 
tensor is much smaller than that of the transport terms. However, as Re increases, 
the pressure-strain terms should become more of a factor in the budget. Higher-Re 
simulations are needed to evaluate the model in a more challenging regime. 

5. Predictions of kinetic energy spatial decay with models 
The power-law dependence of the velocity field merits thorough examination be- 

cause of its relation to the entrainment rate (Nokes 1988). When the mixing layer has 
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evolved to a state in which the transport balances the dissipation, the kinetic energy 
profile becomes stationary. Assuming a power-law dependence for all variables and 
a steady mixing layer, two-equation models yield a decay exponent with a given set 
of model constants. For the steady mixing layer the kinetic energy budget (2.17) 
simplifies to 

Viscous diffusion of kinetic energy is disregarded since its contribution is approxi- 
mately 5% of the budget. The source is also negligible in the mixing layer (see figure 
19). Three two-equation models are examined. Each models the transport (the terms 
on the left-hand side of (5.1)) and the dissipation using a combination of two scalar 
variables: k and E. (Launder 1990), k and kl  (MY) and k and CL) (Wilcox 1988) where 
o is an inverse time scale. The eddy viscosity is formed from the two variables to 
achieve closure. The three models are 

k - 6  

vt = k2/e ,  (Q, crE, c,~, ce2) = (I, 1.3,0.09,1.92); J 
k - k l  

vt = qj,  (S,,S~, c D )  = (0.2,0.2,0.06), q2 = 2; J 

Letting k - Ky",  E. - Eyp, o - Wy6,  E - Ly" and vt - VyY the exponents of spatial 
decay can be obtained analytically by substituting into (5.2)-(5.4). Each model yields 
a quadratic equation which produces two values of E. For each model it is possible 
to eliminate one root by physical arguments. In the case of the k - E and k - LL, 

models one of the roots is positive, which is impossible since energy must decay as 
distance increases from the source. For the k - kl model both roots are negative 
but one of the roots results in an eddy viscosity that increases with distance from 
the source, making the eddy viscosity finite in regions in which the turbulence has 
not yet diffused. Table 3 shows the values of a based on the accepted values of the 
parameters for the two-equation models together with a summary of the simulation 
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k = Ky” 
a 

Two-equation models 
k--E -4.9 
k - k l  -2.8 
k - w  -2.5 

Simulation -2.45 
Hopfinger & Toly (1976) -2 
Hannoun, Fernando & List (1988) -1 
Nokes (1988) -1 to -1.5 

vt = vyy 

j ,  

-1.5 
-0.25 
-0.43 
-0.42 (vl = k”*1) 

0 (v, = k”21) 
(decay of r.m.s. u) 
(decay of r.m.s. u )  

TABLE 3. Power-law exponents for spatial dependence of k and v, 

and experimental results. Experimental values for a range between -2 and -3 (Nokes 
1988 reports a r.m.s. velocity decay as rapid as y-15 which presumably corresponds 
to a kinetic energy decay law of about yP3). Laboratory results indicate that the eddy 
viscosity, if modelled as k‘’‘1 (Hopfinger & Toly 1976), is constant with distance since 
k - y-* and I N y .  The predicted spatial dependence of the eddy viscosity for the 
models and simulation are also listed in table 3. All the two-equation models yield 
1 - y ,  or 0 = 1. 

Compared to the experimental values, a = -2 (Hopfinger & Toly 1975), and the 
simulation value of -2.45, the k - e model value is too large. It can be expected 
that this large value of decay exponent will result in a slowly propagating interface. 
Both the k - kl and k - w models are better at reproducing experimental values of 
the spatial dependence of the kinetic energy and eddy viscosity. The model constants 
can be adjusted to yield the expected decay rates. For example, changing C,, in the 
k - c model from 1.92 to 2.5 will result in a decay exponent of a = -2.0 but this may 
cause the model to predict other flows poorly. 

6. Conclusions 
A simulation of a decaying, shear-free mixing layer compares well with the experi- 

ments of Veeravalli & Warhaft (1989). In particular. the intermittency of the mixing 
layer, quantified by the skewness and kurtosis, is in excellent agreement. The tem- 
poral decay of kinetic energy in the decaying mixing layer compares well with other 
simulations and experiments, The simulations that were initialized with E ( K )  * 7c4 de- 
pendence at low wavenumber were found to decay faster initially than the E ( K )  w K’ 

flow. After 2 eddy turnover time scales, however, the two simulations exhibited similar 
power-law decay exponents. The turbulent eddies in the mixing layer that produce 
the intermittency and transport are characterized by relatively large vertical kinetic 
energy and large vertical length scale. Low-pressure wakes are created behind eddies 
as they penetrate the mixing layer. The pressure field removes energy from these 
eddies and produces negative pressure transport in the mixing layer. 

For the forced mixing layer simulations, the spatial dependence of the kinetic energy 
and integral length scale are similar to those observed in oscillating grid experiments. 
The anisotropy ratio, v’/u’, remains larger than unity in the mixing layer. 

Isotropic models (Mellor & Yamada 1986; Hanjalii. & Launder 1972) generally 
underpredict the transport correlations. The underprediction is fairly uniform for 
the Hanjalib & Launder (1972) model which suggests that an alteration of the con- 
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stants will improve the accuracy. An anisotropic model, although more complicated, 
performs slightly better. This improvement is due to the emphasis on the vertical 
component of velocity. A common model of the pressure-strain tensor was found to 
be generally accurate. 

The spatial decay rate predicted by the k --E model is approximately twice the value 
recorded in experiments. Predictions with the k - kl and k - w models are within 
an acceptable range. The decay exponent calculated from the simulation is also near 
experimental values. 

Future simulations will include the effects of a stable density gradient. Increasing 
Re]. will also be attempted. 

We thank the reviewers for their comments and suggestions. The authors also 
wish to thank the Office of Naval Research for support of this work through grant 
number N00014-92-5-1611, monitored by Dr L. Goodman. Mr M. Stacey and Dr C. 
Rehmann helped develop some of the concepts through many useful discussions. 

Appendix, 'Kinetic theory' model of entrainment 
The contours of kinetic energy in the figures suggest that the mechanism of en- 

trainment in shear-free mixing layers involves the creation of relatively large energetic 
eddies in the source region and the subsequent motion of these eddies into the low- 
energy region. This suggests the following model for the process. 

Imagine that an eddy of diameter d and speed v is injected into the flow in the 
source region. Assume that the size of the eddy remains unchanged as it moves but 
its speed is reduced by drag. We picture this eddy as something like a hard sphere, 
which is why we call this a kinetic theory model. 

The equation of motion for such an eddy is 

471 dv 2 PQ2 
O 2  

-/ p- = -nt C 
3 dt 

where CD is the drag coefficient. At the low Reynolds numbers of interest here, it is 
reasonable to assume that CD NN 24Re-' where Re = U ~ / V  (White 1973); deviations 
from this approximation will be discussed below. 

Since time does not appear explicitly in (A l), we may consider 1: to be a function 
of the distance along the trajectory s and write 

dv duds dv 
dt ds dt ds 

= u-. - - - -_ 

With the aid of (A 2), (A 1) reduces to 

V - -9- dv 
ds t 2  
_ -  

which is easily integrated to give 

- = ( I - 9 G s )  V V 

DO 

This result holds only when v > 0, i.e. when s < v0d2/9v. 
To simplify matters, the source is idealized as a plane. To calculate the energy as 

a function of the distance from this plane, one must take into account that eddies of 
various sizes are produced and determine which eddies make the greatest contribution 
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to the energy at a given z .  One might surmise that, at large distances from the source, 
the largest eddies are most important and assume that the distribution or spectrum 
(expressed in terms of length scale) has the form 

E ( L )  = A L-l 

for large 6. This is equivalent to a spectrum in terms of wavenumber which behaves 
as krP2 for small k ,  which suggests that reasonable values of r might lie in the range 

Equation (A4) shows that the penetration depth of an eddy of size L is uo(e)L2/(9v). 
The characteristic velocity of an eddy with size L given the spectrum (A 5) is DO(/) = 
A1/2d(-r+L)/2. For r = 4, this gives a penetration depth which increases as / ' I 2  for large 
t'. On the other hand, for r = 6, the penetration depth decreases as /-1/2 for large d. 
Thus, for r = 4, the largest eddies dominate at large distances, while for r = 6, eddies 
at the peak of the spectrum are likely to be more important. The former case should 
give a length scale which increases with distance from the source while the latter 
should give a constant length scale. Note that the dependence of the penetration 
depth on L is weak and, as these results are based on an oversimplified model, they 
must be regarded with suspicion. On the other hand, the sensitivity of the behaviour 
of the turbulence energy to details of the source was observed in the simulations 
and is therefore likely to be correct. In particular, the length scale may not always 
increase linearly with depth as many people assume and most models predict. 

This model also predicts that the anisotropy increases with distance from the source. 
It is difficult to determine whether this is supported by the simulations because the 
decay is too rapid to allow an accurate assessment to be made. The model is even 
simpler if it is assumed that the drag coefficient is independent of Reynolds number. 
This should be true at high R e  but it is unlikely to be valid under the conditions of 
the experiments and the simulations reported herein. 

The fact that this simple model predicts many of the experimental and simulation 
results lends support to the proposed mechanism of entrainment. 

4-6. 
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